Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Sustain Cities Soc ; 75: 103336, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1386611

ABSTRACT

The outbreak of SARS CoV-2 (COVID-19) has posed a serious threat to human beings, society, and economic activities all over the world. Worldwide rigorous containment measures for limiting the spread of the virus have several beneficial environmental implications due to decreased anthropogenic emissions and air pollutants, which provide a unique opportunity to understand and quantify the human impact on atmospheric environment. In the present study, the associated changes in Land Surface Temperature (LST), aerosol, and atmospheric water vapor content were investigated over highly COVID-19 impacted areas, namely, Europe and North America. The key findings revealed a large-scale negative standardized LST anomaly during nighttime across Europe (-0.11 °C to -2.6 °C), USA (-0.70 °C) and Canada (-0.27 °C) in March-May of the pandemic year 2020 compared to the mean of 2015-2019, which can be partly ascribed to the lockdown effect. The reduced LST was corroborated with the negative anomaly of air temperature measured at meteorological stations (i.e. -0.46 °C to -0.96 °C). A larger decrease in nighttime LST was also seen in urban areas (by ∼1-2 °C) compared to rural landscapes, which suggests a weakness of the urban heat island effect during the lockdown period due to large decrease in absorbing aerosols and air pollutants. On the contrary, daytime LST increased over most parts of Europe due to less attenuation of solar radiation by atmospheric aerosols. Synoptic meteorological variability and several surface-related factors may mask these changes and significantly affect the variations in LST, aerosols and water vapor content. The changes in LST may be a temporary phenomenon during the lockdown but provides an excellent opportunity to investigate the effects of various forcing controlling factors in urban microclimate and a strong evidence base for potential environmental benefits through urban planning and policy implementation.

2.
Cities ; 117: 103308, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1275215

ABSTRACT

SARS CoV-2 (COVID-19) coronavirus has been causing enormous suffering, death, and economic losses worldwide. There are rigorous containment measures on industries, non-essential business, transportation, and citizen mobility to check the spread. The lockdowns may have an advantageous impact on reducing the atmospheric pollutants. This study has analyzed the change in atmospheric pollutants, based on the Sentinel-5Ps and ground-station observed data during partial to complete lockdown period in 2020. Results revealed that the mean tropospheric NO2 concentration substantially dropped in 2020 due to lockdown against the same period in 2019 by 18-40% over the major urban areas located in Europe (i.e. Madrid, Milan, Paris) and the USA (i.e. New York, Boston, and Springfield). Conversely, urban areas with partial to no lockdown measures (i.e. Warsaw, Pierre, Bismarck, and Lincoln) exhibited a relatively lower dropdown in mean NO2 concentration (3 to 7.5%). The role of meteorological variability was found to be negligible. Nevertheless, the reduced levels of atmospheric pollutants were primarily attributed to the shutdown of vehicles, power plants, and industrial emissions. Improvement in air quality during COVID-19 may be temporary, but regulatory bodies should learn to reduce air pollution on a long-term basis concerning the trade-offs between the environment, society, and economic growth. The intersection of urban design, health, and environment should be addressed by policy-makers to protect public health and sustainable urban policies could be adopted to build urban resilience against any future emergencies.

3.
Environ Res ; 199: 111280, 2021 08.
Article in English | MEDLINE | ID: covidwho-1240348

ABSTRACT

The SARS CoV-2 (COVID-19) pandemic and the enforced lockdown have reduced the use of surface and air transportation. This study investigates the impact of the lockdown restrictions in India on atmospheric composition, using Sentinel-5Ps retrievals of tropospheric NO2 concentration and ground-station measurements of NO2 and PM2.5 between March-May in 2019 and 2020. Detailed analysis of the changes to atmospheric composition are carried out over six major urban areas (i.e. Delhi, Mumbai, Kolkata, Chennai, Bangalore, and Hyderabad) by comparing Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) and land surface temperature (LST) measurements in the lockdown year 2020 and pre-lockdown (2015-2019). Satellite-based data showed that NO2 concentration reduced by 18% (Kolkata), 29% (Hyderabad), 32-34% (Chennai, Mumbai, and Bangalore), and 43% (Delhi). Surface-based concentrations of NO2, PM2.5, and AOD also substantially dropped by 32-74%, 10-42%, and 8-34%, respectively over these major cities during the lockdown period and co-located with the intensity of anthropogenic activity. Only a smaller fraction of the reduction of pollutants was associated with meteorological variability. A substantial negative anomaly was found for LST both in the day (-0.16 °C to -1 °C) and night (-0.63 °C to -2.1 °C) across select all cities, which was also consistent with air temperature measurements. The decreases in LST could be associated with a reduction in pollutants, greenhouse gases and water vapor content. Improvement in air quality with lower urban temperatures due to lockdown may be a temporary effect, but it provides a crucial connection among human activities, air pollution, aerosols, radiative flux, and temperature. The lockdown for a shorter-period showed a significant improvement in environmental quality and provides a strong evidence base for larger scale policy implementation to improve air quality.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Environmental Monitoring , Humans , India , Pandemics , Particulate Matter/analysis , SARS-CoV-2 , Temperature
4.
Progress in Physical Geography: Earth and Environment ; : 0309133320966741, 2020.
Article in English | Sage | ID: covidwho-901668

ABSTRACT

To curb the spread of novel coronavirus (COVID-19), confinement measures were undertaken, which altered the pattern of energy consumption and India?s anthropogenic CO2 emissions during the effective lockdowns periods (January to June 2020). Such changes are being analyzed using data of energy generated from coal and renewable sources and fossil-based daily CO2 emissions. Results revealed that coal-fired (fossil-based) energy generation fell by ?13% in March, ?29% in April, and ?20% in May, and ?16.6% in mid-June 2020 as compared with the same period in 2018?2019. Conversely, the renewable energy generation increased by 19% in March, 12% in April, 17% in May, and 7% in June 2020. The share of fossil-based energy fell by ?6.55% in 2020 compared with mean levels, which was further offset by increases of renewable energy. India?s daily fossil-based CO2 emissions fell by ?11.6% (?5 to ?25.7%) by mid-June 2020 compared with mean levels of 2017?2019 with total change in fossil-based CO2 emission by ?139 (?62 to ?230) MtCO2, with the largest reduction in the industry (?41%), transport (?28.5%), and power (?21%) followed by the public (?5.4%), and aviation (?4%) sectors. If some levels of lockdown persist until December 2020, both energy consumption and CO2 emissions patterns would be below the 2019 level. The nationwide lockdown has led to a reduction in anthropogenic CO2 emissions and, subsequently, improved air quality and global environment and has also helped in reducing atmospheric CO2 concentrations at the local level but not on the global level. With suitable government policies, switching to a cleaner mode of energy generation other than fossil fuels could be a viable option to minimize CO2 emissions under increasing demand for energy.

SELECTION OF CITATIONS
SEARCH DETAIL